

Norwegian Meteorological Institute **ExWaMar, (2016-2019) "EXtreme wave WArning criteria for MARine structures"**, Norwegian Research Council project (no 256466).

On concurrency of wave and crest height characteristics at two neighbouring wave buoys

- using a new flexible and cost effective wave sensor

Ole Johan Aarnes, Birgitte Furevik, Anne Karin Magnusson, Odin Gramstad, Elzbieta Bitner-Gregersen and Harald Tholo

11.11.2019 - 2nd International Workshop on Waves, Storm Surges and Coastal Hazards

Motivation

- Are <u>sea states</u> with higher probability of elevated wave heights/crests verifiable with buoys?
- Comparing wave height/crest statistics from two adjacent wave buoys
 - Identical sensors
 - Homogeneous wave conditions (deep water)
 - Buoys tend to underestimate crests
 - ✓ Short time series (~4 months)

Motus Wave Sensor

- a new flexible and cost effective wave measuring device
- Inertial Measurement Unit (IMU) / Micro Electro-Mechanical Systems (MEMS)

Available data

*No filtering applied

Data (30 min da	ta) / Sensor	Waverider / Sensor #1	Tideland / Sensor #18	EMM2.0 / Sensor #17
	Integrated parameters	\checkmark	\checkmark	\checkmark
Wave	Fourier coefficients	\checkmark	\checkmark	\checkmark
	Surface elevation (4Hz)*		\checkmark	\checkmark
Currents	Speed/direction			\checkmark
Winds	Speed/direction (gust)			\checkmark

	Waverider #1			
	Wave Sensor 5729#18			
	Motus Wave Sensor 5729#	¥17		
	In-Line DCS #25			
	Gill MaxiMet GMX500-5 #1	L6270046		
Lan2018	Eeb2018	Mar2018	Δpr2018	 May2018
4	1002010	1412010	Api 2010	11072010

Area of interest / bathymetry

Buoy drift vs winds/currents

- one week of data

Sensor #17(red) and sensor #18(yellow) similar behavior
Waverider #1(blue) slightly less affected by winds (windage)

Norwegian Meteorological

8

Buoy drift vs winds/currents

4 months of data

Surface elevation data

- Motus Wave Sensor 5729#17: Maximum wave/crest height

Hmax/Hs > 2.2 *Cmax/Hs* > 1.25

Normalized Wave Height Distribution

Hmax/Hs > 2.2 *Cmax/Hs* > 1.25

Normalized Crest Height Distribution

Rogue wave occurrences

Hmax/Hs > 2.2 *Cmax/Hs* > 1.25

- Statistics and type of sea states (Hs/Tz)

	n _{seas}	n _{waves}	Max (H/Hs)	Max (C/Hs)	Rogues H>2.2Hs	Rogues C>1.25Hs	Double rogues
Sensor #17	4974	1764780	2.42	1.32	3	5	0
Sensor #18	4974	1719749	2.42	1.52	7	10	4

Rogue waves

- mechanisms and predictability

- In the absence of shoals (deep water) the main mechanisms for rogues are
 - linear superpositioning
 - current effects (refraction)
 - modulational instability
 - \succ steep sea states
 - > narrow wave spectrum (bandwidth), both in frequency and direction
- **Benjamin-Feir index** (BFI) a predictor of rogue waves?
 - ratio between wave **steepness** and **spectral bandwidth**
 - high BFI <u>may</u> represent increased probability of rogues
 - demonstrated numerically and in wave tanks not well documented in the open ocean

BFI - Rogue wave predictability

- combining sensor #17 and #18

Boxes show Q1 and Q3 while whiskers represent the 5- and 95-percentiles

- Wave height distribution: Six case studies

- Wave crest distribution: Six case studies

- 30-min data vs filtered (boxcar: 12 hours / 24 time steps)

Filtered (12-hour) - p99

Buoy position density/mean current velocity - binned by equally sized lat/lon-bins

Norwegian Meteorological

Institute

- Are wave/crest statistics affected by:
 - radial position (current velocity) due to line tension?
 - current heading relative to waves?

P99 - normalized wave height

- mean value per lat/lon-bin (bins N<12 censored)

Norwegian Meteorological Institute

Summary / conclusions

Based on <u>4 months</u> of wave data from two adjacent <u>MOTUS buoys</u>, we find that:

- Long-term wave height/crest statistics <u>correspond to 2nd order wave theory</u>
- Short-term variability in upper tail behavior (rogues) is significant
 - \succ temporally and spatially
 - supported by higher order spectral model (HOSM) simulations
 - challenging to verify sea states (para) representing elevated probability of rogues using buoys
 - higher percentiles <u>may</u> provide a more robust metric for rogue wave warning (validation)
- Wave height/crest statistics
 - ➤ seem unaffected by line tension (due to currents)
 - could be affected by current heading (relative to wave direction)

Extras

Norwegian Meteorological Institute

Motus Wave Sensor

- a new flexible and cost effective wave measuring device
- based on Inertial Measurement Unit (IMU) / Micro Electro-Mechanical Systems (MEMS)

Motus (Wave sensor #17)

BFI - Rogue wave predictability

Boxes show Q1 and Q3 while whiskers represent the 5- and 95-percentiles

- 30-min data vs filtered (boxcar: 6 hours / 12 time steps)

- 30-min data vs filtered (boxcar: 12 hours / 24 time steps)

- 30-min data vs filtered (boxcar: 24 hours / 48 time steps)

Buoy position density

binned by equally sized lat/lon-bins -

	Observation density: Motus Wave Sensor 5729#17 Entries: 5118													Observation density: Wave Sensor 5729#18 Entries: 5357																														
59.1469									1	3	1											180	59.1509									5	11	5										
59.1467					1	12	35	40	43	48	22	9	3	1									59.1507					1	13	109	192	147	137	124	63	36	9							
59.1464			2	62	113	136	94	112	82	77	66	44	25	9	9							- 160	59.1504				25	245	275	219	102	43	54	48	42	67	68	51	15					
59.1461			64	118	96	133	147	107	83	63	70	61	63	51	30	19	3						59.1501			6	156	69	34	21	23	42	76	61	29	21	19	21	41	10				
59.1458	1	28	79	103	103	39	26	14	8	14	12	14	19	30	37	31	14	2				- 140	59.1499		5	148	73	24	53	32	26	14	7	4	4	12	17	17	17	56	17			
59.1455	19	45	110	47	26	8	7	5	6	2	3	3	6	8	19	36	38	3	2				59.1496		55	48	15	42	15	1		5	2			2	4	7	12	17	31	12		
59.1453	7	34	27	9	5	1	2	2		2	1	3		3	2	6	24	5	9			- 120	59.1493	7	27	20	18	7	2		4	1				1		4	8	7	26	15		
59.145	15	52	17	2	5	3	1	4	3	2	2	1	2	3	5	4	17	22	9				59.1491	21	32	15	8	2	2	3	1	1	1	2	1	1	3	5	5	7	11	26	6	
59.1447	28	44	5	4	2	2	4	3			1	1		4	2	5	6	30	9	4		- 100	59.1488	26	37	3	4	4		1		2	2		2	1		1	3	6	7	19	12	
59.1444	30	26	6	1	1	2	1	6	1	1	1	1	1	1	3	4	4	18	15	7		100	59.1485	16	6	2	3				1	1		1		1	1	2	2	4	5	8	19	
59.1441	23	16	3	3	2	2		2		3	2		3	1	3	5	7	25	17	8	1		59.1483	26	7	4		2	4		1		1	1	1		1	1	4	3	3	21	28	1
59.1439	11	9	5	3		1	3	1	2			1	2		1		4	16	8	3		- 80	59.148	14	13	4	4	1		2		1	2	1	1	1		1	2	5	9	19	27	
59.1436	9	14	3	2	3	3		1					3	2	2	5	5	16	17	11			59.1478	8	14	2	4	3	1	1		1	2	1		2	1	1	1	2	4	7	20	
59.1433	9	9	3	5	2	3	1		3		2	2	2	2	1	3	14	19	29	6		- 60	59.1475	5	5	6	4			3	1		1	1	1	4	1	2	3	8	6	22	16	
59.143	2	16	9	4	2	2	1	2			3		2	5	3	7	15	13	3	1			59.1472		17	7	8	4	1	3	2	1		1	3	3	2	1	2	6	21	19	1	
59.1427		10	19	2	4	2	5	2	1	1	3	2	1	6	5	8	20	18	1			- 40	59.147		4	12	3	5	3	3	2	2	1		2	3	3	4	5	9	19			
59.1425		1	14	10	3	5	2	2	1	3		1		3	8	12	17	2					59.1467			11	17	7	2		3	5	4	1	2	3	8	4	11	38	17	2		
59.1422			6	26	12	2	2	2	6	3	3	3	5	8	19	29	14	1				- 20	59.1464				12	17	12	9	4	4	6	4	5	7	16	28	15	23	1			
59.1419				1	18	20	12	5	6	5	7	8	15	31	29	15	1						59.1462					3	10	15	6	6	5	5	7	8	24	30	4					
59.1416					1	8	20	35	38	41	52	56	56	29	5								59.1459					3	7	14	25	31	31	43	63	51	41	13						
59.1413								2	9	26	15											NaN	59.1456								1	4	11	3	2									
5.0	084 5.0	089	094.0	099 5.0	105 E	.012	0115 F	5.012	0126	.0131	0136	0141	0146	152	0157	0162	0167	J12 5.	1218	183	188		5.0	2155	.022.	1225 5	.023.0	2355	.024.0	244	249	254	259 5.0	264 .0	269	214 5.9	219	284 5.0	289 .0	1293.0	1298 5.9	1303 .03	,08,0?	323

NaN

Norwegian Meteorological Institute \sim

Maximum normalized wave height

- mean value per lat/lon-bin (bins N<12 sensored)

Norwegian Meteorological Institute

P95 - normalized wave height

- mean value per lat/lon-bin (bins N<12 sensored)

Norwegian Meteorological Institute